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Abstract: We compute a one-loop effective action for the constant modes of the scalars

and the Polyakov loop matrix of N = 4 SYM on S3 at finite temperature and weak ’t

Hooft coupling. Above a critical temperature, the effective potential develops new unstable

directions accompanied by new saddle points which only preserve an SO(5) subgroup of

the SO(6) global R-symmetry. We identify this phenomenon as the weak coupling version

of the well known Gregory-Laflamme localization instability in the gravity dual of the

strongly coupled field theory: The small AdS5 black hole when viewed as a ten dimensional,

asymptotically AdS5 × S5 solution smeared on the S5 is unstable to localization on S5.

Our effective potential, in a specific Lorentzian continuation, can provide a qualitative

holographic description of the decay of the “topological black hole” into the AdS bubble

of nothing.
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1. Introduction

The finite temperature behaviour of SU(N) gauge theories at large N provides a remarkable

window into the physics of black holes and stringy gravity via the AdS/CFT correspon-

dence [1]. Features of the phase structure of large N , N = 4 supersymmetric Yang-Mills

(SYM) theory on S3 at finite temperature are now known to mirror aspects of semiclassical

gravity on asymptotically AdS5 spacetimes [2 – 6]. Importantly, the work of [6] has demon-

strated that studying the field theory in the tractable regime of weak ’t Hooft coupling may

allow us to deduce qualitative physics of the string theory dual emerging at intermediate

and strong couplings. The weakly coupled field theory exists in one of two thermodynam-

ically stable phases separated by a first order deconfinement transition; in addition there

is the possibility of a thermodynamically unstable saddle point [6 – 8]. Indeed, the strong

coupling gravity dual also exhibits a first order Hawking-Page transition [9] between two

stable geometries: thermal AdS space and the big AdS-Schwarzschild black hole, mediated

by the thermodynamically unstable Euclidean small AdS black hole bounce. 1

1The comparison between the phase structure of the weakly interacting thermal gauge theory and strong

coupling gravity dual has recently been extended to include non-zero chemical potentials for the global

U(1)3 ⊂ SO(6)R charges in the field theory [10] (see also [11]). The latter is dual to charged black hole

geometries in AdS5.
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The aim of this paper is to take the qualitative matching of thermodynamic phase

structure one step further and to explore certain questions which have dynamical con-

sequences. Specifically, the small AdS5 Schwarzschild black hole, when viewed as a ten

dimensional asymptotically AdS5 × S5 solution smeared uniformly on the S5, has a clas-

sical dynamical instability (in addition to having a thermodynamic instability). This is a

Gregory-Laflamme instability to localization [12 – 16], wherein the small black hole origi-

nally smeared on the S5 develops an instability as its horizon size in AdS5 decreases below

a critical radius (or equivalently, above a critical temperature). The unstable mode leads

to the small black hole becoming non-uniform and eventually point-like on the S5, break-

ing the associated SO(6) isometry down to SO(5). The question we aim to answer in this

paper is how, if at all, this dynamical instability to localization may be seen within the

framework of the holographically dual thermal field theory on a three-sphere. Remarkably,

within the regime of validity of perturbation theory we find that above a critical temper-

ature at which the radius of the three-sphere becomes comparable to the Debye screening

length, the weakly coupled field theory exhibits a clear signal of such an instability.2

The N = 4 theory on S3 at finite temperature has two scales, namely the radius R of

the three-sphere and the temperature T . Consequently the theory possesses two tunable

dimensionless parameters, the combination (TR) and the ’t Hooft coupling λ = g2
Y MN . On

S3×S1, at weak ’t Hooft coupling λ ¿ 1, we calculate a one loop quantum effective action

as a function of homogeneous background expectation values for the Polyakov loop 3 and

the six scalar fields transforming in the adjoint representation of SU(N). More precisely,

we compute a finite temperature effective action of the Coleman-Weinberg type on a slice of

the full configuration space parameterized by the N eigenvalues of each of these fields. The

one loop computation is valid for a wide range of temperatures at weak ’t Hooft coupling

0 ≤ TR ¿ 1

λ
. (1.1)

A crucial point, which ensures the validity of perturbation theory at high temperatures

within the range above, is the infrared cutoff provided by the finite size of the three-

sphere. In particular, we will mainly be interested in temperatures (TR) ∼ 1/
√

λ which is

well within the above range. At these temperatures the radius of S3 becomes comparable

to the Debye screening length (
√

λT )−1. In flat space, at these scales one needs to resum

the one loop thermal mass of the modes to cure infrared divergences in perturbation theory.

On S3 however, the presence of an explicit infrared cutoff, namely R ∼ (
√

λT )−1, ensures

the validity of perturbation theory at these length scales, albeit in the parameter
√

λ as

opposed to λ. Our calculation differs from the work of [10] in that we have generic values

for the Polyakov loop matrix and scalar fields, but vanishing chemical potential. Thus we

explore the landscape of the effective potential away from local minima.

We now summarize the main features of the quantum effective action we obtain in

equations (3.23), (3.24) and (3.25) of the paper. Firstly, the effective action provides a

2A similar phenomenon has been studied in 1+1 dimensional Yang-Mills theory in [17].
3We use the term Polyakov loop loosely since we are actually referring to the holonomy matrix of the

gauge field around the thermal circle and not just its trace.
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combined static effective potential on the space of the eigenvalues of the Polyakov loop

matrix and of the constant modes of the scalar fields in the N = 4 multiplet. It is

obtained by integrating out all fluctuations of these matrices (including off-diagonal ones)

and all non-zero modes on S3 × S1. For vanishing scalar fields, our action reduces to

the unitary matrix model obtained in [6]. Hence at low temperatures T ¿ R−1, the

effective potential exhibits a single saddle point with vanishing scalar fields and uniformly

distributed Polyakov loop eigenvalues. This is the “thermal AdS” saddle point. At the

Hagedorn temperature TH = −(R ln(7 − 4
√

3))−1 (or slightly below it for finite coupling)

a first order deconfinement transition occurs beyond which a new global minimum appears

with a gapped distribution for the Polyakov loop eigenvalues and vanishing scalar fields.

This is the “big AdS black hole” minimum.

At temperatures above TH , the thermal AdS saddle point with vanishing scalar fields

persists as a thermodynamically unstable saddle point, while the globally stable big black

hole dominates the canonical ensemble. For all temperatures TH < T < R−1/
√

λ, this

continues to be the picture with the scalar fields forced to vanish by the tree level quadratic

mass term arising from the conformal coupling to the curvature of S3.

At temperatures T & R−1/
√

λ however, something interesting begins to happen. The

one loop contribution becomes comparable to the tree level mass while, crucially, the higher

loop corrections remain perturbatively small, suppressed by powers of
√

λ. At a critical

temperature Tc ∼ R−1/
√

λ, a new unstable mode, along the R-charged scalar directions,

emerges at the thermodynamically unstable “thermal AdS” saddle point. In the large N

limit this critical temperature is found to be

Tc =
π√
2λ

R−1. (1.2)

Beyond this temperature, new unstable saddle points appear with lower action than the

“thermal AdS” configuration which becomes unstable to rolling down to these new extrema.

Importantly, at these extrema the scalar fields of the N = 4 theory have non-zero values.

In the large N theory these expectation values are left invariant only by an SO(5) subgroup

of the full SO(6) R-symmetry of the theory. However, the “big black hole” configuration

continues to be the global minimum of the action with vanishing VEVs for all scalars which

is consistent with expectations from the bulk gravitational physics.

We identify this high temperature phenomenon as a continuation to weak ’t Hooft

coupling of the Gregory-Laflamme instability encountered in the gravity dual of the strongly

coupled gauge theory. There too, a thermodynamically unstable saddle point, namely the

small AdS black hole develops a new dynamical instability to localization on the S5 breaking

the SO(6) isometry to SO(5). The main difference is that at weak coupling, at temperatures

of O(R−1/
√

λ) any “small black hole” type unstable saddle point disappears [6] or merges

with the “thermal AdS” configuration [8].

In fact, as the temperature is increased, we find more and more unstable modes in the

large N field theory around the thermal AdS saddle point. Whenever the temperature hits

the critical values

T (l)
c =

(2l − 1)π√
2λ

, (1.3)
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Figure 1: Qualitative plot of small black hole (SBH) existence lines, and extrapolation of weak

coupling critical temperature for the Gregory-Laflamme localization instability as a function of

’t Hooft coupling λ. SBH comes into existence above the dashed line and below the Hagedorn

temperature line. Localization occurs above the solid line.

labeled by the positive integers l, a new unstable mode appears. This phenomenon is

consistent with the observations of [16] in the context of the instabilities of the small black

hole where, as the temperature is increased, new tachyonic modes emerge. Importantly,

the unstable modes involve only the homogeneous fields on S3, all Kaluza-Klein harmonics

remain massive.

A naive extrapolation of our weak coupling result suggests that the critical temperature

for the onset of the instability decreases with increasing λ. It is therefore plausible that

for large couplings, the localization instability kicks in at a temperature where the small

black hole saddle point still exists and one obtains a Gregory-Laflamme instability. This is

illustrated in figure 1. We must also bear in mind that weak ’t Hooft coupling translates

to string scale curvatures in the dual geometry and at these scales it is possible that

the small black hole makes a Horowitz-Polchinski transition to a highly excited state of

strings [18, 8, 19] before the onset of any localization instabilities.

We should point out that the large N limit plays an important role in all of the above,

since only in this limit can we legitimately speak of “SO(6) breaking expectation values”

in the field theory formulated on the compact space. On a compact space, in the quantum

theory we must integrate over all points in field space which are related by the global

symmetry. 4 At large N the integration measure for this averaging procedure yields a

contribution which is sub-leading in N . We discuss this in more detail later in section

3.3.2.

The outline of our paper is as follows. In section 2 we review the general story of black

hole instabilities in AdS space. section 3 is devoted to a detailed calculation of the one

4For a discussion of these issues particularly from the viewpoint of the small black hole gravity solution,

see [19].
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loop effective potential in field theory and determining its saddle points as a function of

temperature. We present our conclusions, interpretations and questions for future study

in section 4. The analysis of unstable directions of the effective potential is presented in

an appendix.

2. Instabilities and AdS Schwarzschild Black Holes

We begin by reviewing the physics of Schwarzschild black holes in asymptotically AdS

spaces [9, 3, 2]. Of particular interest is the the five dimensional AdS-Schwarzschild black

hole which is an asymptotically AdS5 solution to the vacuum Einstein’s equation with a

negative cosmological constant:

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

3, (2.1)

where V (r) = 1 + r2

R2 − r2
h

r2 (1 + rh

R2 ) and R is the radius of AdS5. The black hole horizon

is at r = rh where V (r) vanishes. This black hole emits Hawking radiation. To find the

associated Hawking temperature at which the black hole is in equilibrium with a thermal

bath at that temperature, we employ the usual trick of going to the Euclidean section and

requiring that there are no conical singularities. Taking t → −iχ, the resulting Euclidean

metric is

ds2 = V (r)dχ2 +
dr2

V (r)
+ r2dΩ2

3. (2.2)

Requiring that the metric has no conical singularity at r = rh leads to the χ coordinate

being periodic with period β = 2πR2rh

2r2
h
+R2 . Asymptotically, as r → ∞, the space is Euclidean

AdS5 with the Euclidean time direction being a circle of circumference β. This implies an

equilibrium Hawking temperature

T =
1

β
=

2r2
h + R2

2πrhR2
. (2.3)

Notice that for a certain range of T , there are two solutions for rh given by:

rh =
πTR2

2

(

1 ±
√

1 − 2

(πRT )2

)

. (2.4)

There are no solutions unless T ≥
√

2
πR ≡ T0, which implies that the AdS Schwarzschild

black holes only exist for temperatures above this critical temperature. When T > T0,

there are two geometries corresponding to the two values of rh, the small and the large

AdS black holes. The specific heat Cv ∼ dT
drh

=
2r2

h
−R2

2πR2r2
h

is negative for the small black

hole and positive for the large black hole. This implies that the small black hole is in

an unstable equilibrium with the radiation bath. At equilibrium, the Hawking radiation

emitted and the radiation absorbed from the heat bath are equal. If the black hole emits a

little more than it absorbs, it decreases in size, thereby increasing its temperature (because

of the negative specific heat) which means it emits even more, implying the existence of a

– 5 –
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Figure 2: Temperature as a function of the horizon radius.

thermodynamic instability to decay to thermal AdS. If on the other hand, the small black

hole emits infinitesimally less than it absorbs, it will grow in size until it becomes the large

black hole. The large black hole is in stable thermal equilibrium by virtue of its positive

specific heat. In the Euclidean setup, the thermodynamic instability of the small black hole

manifests itself in the existence of a non-conformal negative mode in the small fluctuation

analysis.

Although the small AdS5 Schwarzschild black hole is thermodynamically unstable, it

suffers from no classical dynamical instability, in the sense that there are no tachyonic

small fluctuation modes. This changes when we add extra dimensions along which the

black hole is uniformly smeared. For example, in the context of type IIB string theory on

asymptotically AdS5 × S5 background, the five dimensional small AdS black hole solution

is smeared uniformly on the S5. In what follows, we will review how this 10 dimensional

solution suffers from a classical dynamical instability to localization on the S5 [16].

2.1 Gregory-Laflamme instabilities and the Gubser-Mitra conjecture

When black holes are smeared along some extra non compact “internal” direction, often

the onset of a thermodynamic instability is accompanied by a classical dynamical instabil-

ity signaled by the existence of tachyonic modes in a Lorentzian small fluctuation analysis.

In fact, this dynamical instability is of a Gregory-Laflamme type [12]: The instability is

to localization in the extra directions. We will now review this in more detail. Such a link

between thermodynamical and dynamical instabilities was conjectured by Gubser and Mi-

tra [13, 14]. Further evidence for this connection was provided by Reall [15] and we briefly

review his argument by considering a black string in a five dimensional asymptotically flat

space [16].

The black string in five dimensions is translationally invariant in one spatial direction.

It can be viewed as a four dimensional Schwarzschild black hole solution smeared uniformly

along one extra non-compact direction. If we consider just the four dimensional black hole

in the Euclidean section, the Euclidean Lichnerowicz operator ∆
(4)
E has a negative eigen-

mode

∆
(4)
E hµν = −η2hµν , (2.5)

where η is a real. The association of this Euclidean negative mode with the thermodynamic

instability signaled by a negative specific heat was made in [20]. If we consider static
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fluctuations in Lorentzian signature, the equations obtained are the same as the Euclidean

ones: ∆
(4)
L = ∆

(4)
E when acting on static fluctuations.

However, (2.5) is not the relevant equation in the Lorentzian space. The linearized

equation governing the small fluctuations about a Lorentzian 4D black hole solution is

∆
(4)
L hµν = 0. (2.6)

If, on the other hand, we are considering a five-dimensional black string and fluctuations

which carry momentum along the translationally invariant fifth direction, h
(5)
µν (x, z) =

h
(4)
µν (x)eikz , the relevant fluctuation equation involves a five-dimensional Lichnerowicz op-

erator:

∆
(5)
L h(5)

µν = (∆
(4)
L h(4)

µν + k2h(4)
µν )eikz = 0. (2.7)

This is the same as (2.5) with k2 = η2. For this value of k, there is a “modulus” corre-

sponding to this mode, which signals the onset of instability in Lorentzian signature. This

was called the threshold unstable mode in [15].

The above analysis may seem to imply that every small AdS black hole, when viewed

as solution in AdS5 × S5 which is smeared on the S5 should exhibit a Gregory-Laflamme

like instability. However, the situation is more subtle if the internal smeared directions are

compact, as was discussed in [16]. This is simply because the momentum in the compact

internal dimensions is quantized and this leads to a constraint on the negative Euclidean

eigenvalue for the existence of a threshold unstable mode. For the smeared AdS5 × S5

Schwarzschild case the negative eigenvalue has to be −l(l+4)
R2 which are the eigenvalues

of the Laplacian on the S5. This in turn imposes a constraint on the horizon radius of

the Gregory-Laflamme unstable black holes. For example, only for rh = 0.4R does the

l = 1 mode on the S5 becomes unstable [16]. This is smaller than rh = R√
2

which is the

largest possible horizon radius for the small black hole. In other words, although the small

black hole exists for T ≥ T0 =
√

2
πR = 0.45

R , it only becomes Gregory-Laflamme unstable to

localization on the S5 for T ≥ 0.53
R .

2.2 Hawking-Page transition and the big AdS Schwarzschild black hole

The AdS/CFT correspondence relates the bulk string theory partition function on asymp-

totically AdS5 × S5 geometries to the partition function of the boundary SYM theory. In

the semiclassical supergravity limit, the bulk partition function gets contributions from

saddle points which are classical solutions to the equations of motion. Depending on the

boundary geometry, there can be more than one bulk saddle points and in such a situation

a careful sum [2, 3] over all the saddle points is required. 5

For example, the appropriate boundary geometry to calculate the canonical ensemble

partition function is S3 × S1. For temperatures T > T0 =
√

2
πR , there are three bulk saddle

points with this boundary behavior. These are the two AdS Schwarzschild black holes

(the small and the large) and the thermal AdS geometry, which is Euclidean AdS with a

periodic time direction. For temperatures lower than the critical temperature T0, thermal

5For a review of AdS/CFT correspondence with an emphasis over the sum over different bulk saddle

points, see [21].
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Figure 3: The actions for the big and the small black holes as a function of temperatures.

AdS is the only saddle point. The different saddle points correspond to different phases,

and the locally stable saddle point with the least action dominates the canonical ensemble.

The actions of the three saddle points are formally infinite because of the infinite

volume of thermal AdS and AdS Schwarzschild black holes. However, it turns out that

the differences between the actions of the different solutions are finite and subtracting the

thermal AdS action from the action of the AdS Schwarzschild black holes [9] yields finite

results. Taking the thermal AdS action to be zero, the action for the AdS Schwarzschild

black holes is given by

SBH =
Vol(S3)r3

h

8GN

R2 − r2
h

(R2 + 2r2
h)

. (2.8)

It is easy to see that the action of the small black hole is always greater than both the

action of the large black hole and that of thermal AdS (figure 3), so the small black hole

never dominates the canonical ensemble. The action of the large black hole becomes less

than that of thermal AdS at the Hawking-Page transition temperature THP = 3
2πR . At

lower temperatures, thermal AdS dominates while at higher temperatures the large black

hole dominates the canonical ensemble.

3. Weakly-Coupled N = 4 SYM at Finite Temperature

Recently, weakly coupled SU(N) Yang-Mills theories on S3 have been studied for large N

at finite temperature [6, 7], where it was shown that these theories exhibit an interesting

phase structure at weak coupling. The order parameter distinguishing these phases is the

expectation value of the Polyakov loop, which is non-zero in the high temperature phase

and is zero in the low temperature phase.

In fact, the theories have an interesting phase structure even in the limit of zero cou-

pling [5, 6]. This is because if we define the free theory as a limit of the interacting theory,

we need to impose the Gauss’s law constraint which enforces the zero charge condition

on a spatially compact manifold. On a finite S3, this effectively introduces interactions

which are non-trivial enough to lead to a first order Hagedorn type deconfinement phase

transition at high temperatures. This Hagedorn phase transition is believed to be the zero

coupling analog of the Hawking-Page transition in the dual geometry at strong coupling. At

non-zero but weak ’t Hooft couplings it is expected that there will be two phase transitions,

a deconfining transition followed by the Hagedorn phase transition.

– 8 –
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In [6], the above phenomena at zero coupling were deduced from a Wilsonian effective

action for the Polyakov loop matrix obtained by integrating out all non-zero modes on

S3 × S1. The effective action for the Polyakov loop matrix turns out to be a unitary

matrix model. In the large-N limit it is natural to introduce a continuous spectral density

function ρ(α) for eigenvalues of the Polyakov loop, which are distributed on the unit circle

in the complex plane. It was shown in [6] that in the low temperature phase, the uniform

distribution of eigenvalues of the Polyakov loop is a stationary point of the effective action

and in fact is the minimum. The uniform distribution signals a confined phase of the field

theory and is the weak coupling continuation of the thermal AdS dual geometry.

In the high temperature phase, although the uniform distribution remains a saddle

point, it is not a minimum. The temperature at which the uniform distribution saddle

point ceases to be a minimum is the Hagedorn temperature, which corresponds to the tem-

perature of the confinement/deconfinement phase transition in the free field limit. Above

the Hagedorn temperature, the minimum action eigenvalue distribution becomes nonuni-

form and in particular, is gapped, i.e. the spectral density ρ(α) necessarily vanishes on a

subset of the circle. This implies a finite free energy for colored external sources and is

naturally associated to a deconfined phase. This is the weak coupling version of the big

AdS black hole.

The small AdS black hole unstable saddle point cannot, however, be seen in the free

field limit. It is expected to exist at weak, non-zero ’t Hooft coupling [6 – 8].

3.1 Gregory-Laflamme in field theory

Our goal in this section is to see the analog of the Gregory-Laflamme instability in the

weakly coupled N = 4 SYM at finite temperature on an S3. As we discussed in the

previous section, this instability is associated with the localization of the smeared small

black hole on the S5, breaking the associated SO(6) isometry. In the dual field theory we

would expect this phenomenon to manifest itself as an unstable saddle point which breaks

the SO(6) R-symmetry. Such symmetry breaking has to be a subtle dynamical phenomenon

for two reasons: i) The tree-level scalar potential on S3 ×S1 precludes a non-zero classical

VEV for the scalar fields in the N = 4 multiplet; ii) field theories on compact spaces do

not usually exhibit spontaneous symmetry breaking.

To see the above phenomenon in weakly coupled N = 4 SYM we need to compute a

quantum effective potential for the spatial zero modes of the scalar fields which are charged

under the SO(6) R-symmetry. Thus in addition to the Polyakov loop, we will turn on the

zero momentum modes of the six scalar fields and obtain a joint effective action for these

degrees of freedom in perturbation theory. In addition, we will also see that spontaneous

breaking of the global R-symmetry can occur on a compact space, due to the large N limit.

Finally, it is important to note that we will compute the quantum effective potential

along a special subspace in the space of field configurations, namely one where all the scalar

fields and the Polyakov loop are simultaneously diagonalizable. This will be sufficient to

explore the onset of the localization phenomenon which we are interested in.

– 9 –
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3.1.1 The quantum effective potential

In the canonical ensemble, the thermal partition function of a quantum field theory is equal

to the Euclidean path integral of the theory with a periodic time direction of period β = 1
T

with anti-periodic boundary conditions for the fermions along the temporal circle. Since

we are considering the N = 4 SYM on S3 at finite temperature, we perform a Euclidean

path integral for the theory on S3 × S1.

We now describe the calculation of this path integral and hence the effective free

energy (which is just log of the partition function) to one loop order. This will be a

Euclidean 1PI-effective action for static, spatially homogeneous fields and will therefore be

interpreted as a static effective potential. We note here that although, strictly speaking,

the static effective potential is a useful tool for identifying the equilibrium and locally stable

field configurations, we will actually be interested in exploring its features away from local

minima.

Since the N = 4 theory is conformally invariant, the ratio of the radii of the S3 and

the S1 is the only physically relevant dimensionless parameter (in addition to the ’t Hooft

coupling constant)
RS3

RS1

=
R

β
= R T, (3.1)

where the radius of the thermal circle is β, the inverse temperature and that of the S3 is

R.

To do the effective potential calculation, it is necessary to expand all fields onto modes

corresponding to the spherical harmonics on the S3 and Fourier modes on the S1. We then

compute an effective potential for the constant modes on the S3 × S1 by integrating out

all other modes in the non-trivial background of the constant modes. In particular, we will

compute the effective potential for the modes α and ϕa,

α =
T

Vol(S3)

∫

S3×S1

A0, (3.2)

and

ϕa =
T

Vol(S3)

∫

S3×S1

φa , a = 1 · · · 6. (3.3)

These are the spatially homogeneous, time independent pieces of A0 (the gauge field com-

ponent along S1) and φa, respectively, and so are constant on S3 × S1.

Note that at the classical level, the Wilson line α is a true zero mode in the sense that

the quadratic tree level action is independent of it. In contrast, the scalar modes ϕa are

not zero modes of the classical theory since conformally coupled scalars have a mass of the

order of the inverse radius of S3, due to the curvature of the three-sphere.

Tree level potential. The action for the bosonic fields is

Sb =
1

g2
Y M

∫

d4x
√

g Tr
{

1
4FµνFµν + 1

2DµφaD
µφa + 1

2R2 φaφa − 1
4 [φa, φb]

2
}

. (3.4)

Here, summation over SO(6) indices is implied. The mass term above arises from the

conformal coupling of the scalar fields to the curvature of S3 and in our conventions this

mass is R−2.
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In order to integrate out the non-zero momentum modes, we first shift the scalar fields

by a background homogeneous mode

φa → ϕa + φa . (3.5)

The resulting theory has the following tree level effective action for the scalar modes ϕa:

S(0) = βR3π2 1

g2
Y M

Tr

(

−[α,ϕa]
2 − 1

2
[ϕa, ϕb]

2 + ϕ2
a R−2

)

. (3.6)

In flat space in the absence of curvature induced mass terms, this scalar potential would

have led to a Coulomb branch of vacua parametrized by the eigenvalues of a mutually

commuting set of α and ϕa. However, the conformal mass term for the {ϕa} forces these

to vanish at tree level since the potential (3.6) is a sum of positive definite quantities.

In addition to the above terms there will be radiative corrections at finite temperature,

obtained by integrating out the matter and gauge field fluctuations at one loop level. The

nature of these radiative corrections and the question of stability of the ϕa = 0 classical

solution will be the subject of the calculation below.

Radiative correction at one loop. Computing the quantum corrections to the classical

potential for generic homogeneous background fields is technically difficult. Instead, we

will compute the quantum corrected potential for mutually commuting background field

configurations, namely those satisfying

[α,ϕa] = [ϕa, ϕb] = 0. (3.7)

This will allow us to explore only a slice of the full configuration space. However it will be

sufficient to address the issue of the presence of instabilities of the kind we are interested

in. The classical potential on the space of these configurations is

S(0) = βRπ2 1

g2
Y M

Trϕ2
a. (3.8)

Hence, as indicated above, for the effective potential calculation we shift φa → ϕa +φa

where we assume that {ϕa} and the Polyakov loop α are simultaneously diagonal. The

fluctuations {φa} which will be integrated out are fluctuations about the background,

comprising of all the non-constant modes on S3 × S1 and off-diagonal components of the

homogeneous modes.

We denote indices along S3 as i = 1, 2, 3 (not to be confused with the gauge index)

and that along S1 as 0. Unlike [6] who consider the case with vanishing background fields,

we find it easier to work in a covariant gauge. In particular, we choose a conventional “Rξ

gauge” of a spontaneously broken gauge theory. To this end, we add to the action the

gauge fixing term

Sgf =
1

g2
Y M

1

2ξ

∫

d4x
√

g Tr
(

∇iA
i + D̃0A0 − iξϕaφa

)2
, (3.9)
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which implements a covariant gauge condition. Here and in what follows D̃0 = ∂0 + iα

includes α, the zero mode part of A0 only. Also, we leave adjoint action by the background

fields ϕ and α as implicit, i.e. ϕφ ≡ [ϕ, φ], ϕ2φ ≡ [ϕ, [ϕ, φ]], etc.

We will now expand the gauge fixed action including the ghosts to quadratic order

in fluctuations about the background fields ϕa and the Polyakov loop α. The one loop

determinants obtained by integrating out these fluctuations yield the radiative corrections

to the effective potential. In order to proceed, it is particularly convenient to choose the

Feynman gauge ξ = 1. In this case the action for the bosonic quadratic fluctuations,

including ghosts, takes a simple form:

Sb =
1

g2
Y M

∫

d4x
√

g Tr
[

1
2A0(−D̃2

0 − ∆(s) + ϕ2
a)A0 + 1

2Ai(−D̃2
0 − ∆(v) + ϕ2

a)A
i

+ 1
2φa(−D̃2

0 − ∆(s) + R−2 + ϕ2
b)φa + c̄(−D̃2

0 − ∆(s) + ϕ2
a)c

]

.

(3.10)

Here, ∆(s) and ∆(v) are the Laplacians on S3 for scalar and gauge fields, respectively. The

scalar Laplacian is simply ∇i∇i acting on scalar functions whilst the vector Laplacian is

defined via the quadratic terms in the action:
∫

d4x
√

g Tr 1
4FµνFµν = (3.11)

∫

d4x
√

g Tr
(

− 1
2Aµ(D̃2

0 + ∆(v))Aµ − 1
2(D̃0A0 + ∇iA

i)2 + O(A3)
)

.

The second term on the right hand side is canceled by terms in the gauge fixing action

(3.9). From (3.11), it follows that

∆(v)Ai = ∇j∇jAi − Ri
jA

j , (3.12)

where Rij is the Ricci tensor of S3. For the temporal component of the gauge field, the Ricci

tensor does not contribute and the vector Laplacian is equivalent to the scalar Laplacian:

∆(v)A0 = ∆(s)A0 . (3.13)

The eigenvectors of the scalar Laplacian are spherical harmonics Y` labeled by angular

momentum ` ∈ Z ≥ 0 with

∆(s)Y` = −`(` + 2)R−2 Y`, (3.14)

and degeneracy (` + 1)2. The eigenvectors of the vector Laplacian can be split into two

sets. Firstly, those in the image of ∇i, i.e. ∇iY` with ` > 0, which satisfy

∆(v)∇iY` = −`(` + 2)R−2 ∇iY` , (3.15)

and secondly those in kernel, ∇iV
i
` = 0, also labeled by the angular momentum ` > 0, with

∆(v)V i
` = −(` + 1)2 R−2 V i

` , (3.16)

and degeneracy 2`(` + 2).
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We are now in position to integrate out all the bosonic fluctuations. For the vector

modes, we must first split the Ai into the image and the kernel of ∇i. To this end we

write Ai = Bi + Ci with ∇iB
i = 0 and Ci = ∇if . Integrating these out along with A0,

the ghosts and the six scalar fluctuations yields the following contribution to the one loop

effective potential from bosonic radiative corrections:

S
(1)
b = 1

2 log det`>0(−D̃2
0 − ∆(v) + ϕ2

a) + 1
2 log det`>0(−D̃2

0 − ∆(s) + ϕ2)+

+ (1
2 − 1) log det`≥0(−D̃2

0 − ∆(s) + ϕ2
a) + 6 × 1

2 log det`≥0(−D̃2
0 − ∆(s) + R−2 + ϕ2

a) .

(3.17)

We now describe the various contributions in some detail. The first two terms arise from

integrating out the vector fluctuations Bi and Ci respectively where the subscripts remind

us to exclude the ` = 0 mode of ∆(s) as discussed above equations (3.15) and (3.16). The

third term in the effective potential results from the integrals over the ghost and A0 fields,

each of which contribute the same factor with weight −1 and 1
2 respectively. Finally we

have the fluctuation determinants of the six scalar fields of the N = 4 theory. It is vital

to realize that the determinants for the ghosts, the scalars and A0 all include the ` = 0

modes as indicated. Note that the fluctuation determinants for the Ci, the ghosts and

A0 combine neatly due to a complete cancellation between non-zero momentum modes

yielding a simplified expression for the bosonic one-loop correction:

S
(1)
b =1

2 log det`>0(−D̃2
0 − ∆(v) + ϕ2

a) − 1
2 log det`=0(−D̃2

0 + ϕ2
a)

+ 6 × 1
2 log det`≥0(−D̃2

0 − ∆(s) + R−2 + ϕ2
a) .

(3.18)

We can make these formal expressions explicit by rewriting each of the terms above as a

trace over the thermal frequencies or Matsubara modes and the discrete wave numbers on

S3. The result of the Matsubara trace of a typical contribution in the effective action takes

the form (up to field independent additive constants)

Tr log(−D̃2
0 + ε2) = Tr

(

βε − 2
∞
∑

n=1

1

n
e−βε cos(nβα)

)

. (3.19)

Here ε is the energy of the fluctuation in question with x0 interpreted as imaginary time

and we have used the fact that the operator D̃0 has eigenvalues (2πn/β + α)i; n ∈ Z. The

remaining trace on the right hand side is to be taken over the modes on S3 and the gauge

group. The gauge trace can be made explicit by using the fact that α and ϕ were chosen

to be simultaneously diagonal

α = β−1diag (θ1, θ2, . . . θN ), ϕ = diag (ϕ1, ϕ2, . . . ϕN ) , (3.20)

which in turn yields in general

Tr f(ϕ,α) =

N
∑

ij=1

f(ϕij , αij); ϕij = ϕi − ϕj , αij = β−1(θi − θj). (3.21)
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For SU(N) gauge group the θi and ϕi must satisfy

N
∑

i=1

ϕi = 0 ,

N
∑

i=1

θi = 0 mod 2π. (3.22)

These conditions are a consequence of the Hermiticity of the scalar and gauge fields. The

θi are each thermal Wilson lines for the Cartan components of the gauge field. Hence they

can be shifted by an integer multiple of 2π by performing a topologically non-trivial gauge

transformation which is single-valued in SU(N)/ZN . This must however be an invariance

of the theory since there are no fields charged under the center ZN of SU(N). This results

in the θi being defined only up to an integer multiple of 2π.

Including the explicit sums over the angular momenta on S3 with the appropriate

degeneracies, we can now write down the complete one-loop effective action resulting from

integrating out all the bosonic fluctuations,

S
(1)
b =

N
∑

ij=1

[

− 1

2
β
√

ϕ2
aij +

∞
∑

n=1

1

n
e
−nβ

q

ϕ2
aij cos(nθij)

+
∑

`=1

2`(` + 2)
(β

2

√

(` + 1)2 R−2 + ϕ2
aij −

∞
∑

n=1

1

n
e
−nβ

q

(`+1)2 R−2 +ϕ2
aij cos(nθij)

)

+ 6
∑

`=0

(` + 1)2
(β

2

√

(` + 1)2 R−2 + ϕ2
aij −

∞
∑

n=1

1

n
e
−nβ

q

(`+1)2 R−2 +ϕ2
aij cos(nθij)

)]

.

(3.23)

Finally, to complete the calculation of the effective action we have to include integrals over

the four Weyl fermions. The effect of the background fields is very simple on these modes,

it simply induces a mass squared ϕ2
a for the fermions via their Yukawa couplings. The

fermions are eigenfunctions of the spinor Laplacian on S3 which are also labeled by the

angular momentum ` > 0 with eigenvalue −(` + 1
2)2 and degeneracy 2`(` + 1). The key

difference between fermions and bosons at finite temperature is of course that the former

obey anti-periodic boundary conditions around the thermal circle. Thus, when acting on

fermions the D̃0 operator has eigenvalues (2π(n + 1/2)/β + α)i; n ∈ Z.

Hence, with the anti-periodic boundary conditions around S1 the fermionic contribu-

tion to the effective action is

S
(1)
f = 4

N
∑

ij=1

∞
∑

`=1

2`(` + 1)
(

− β

2

√

(` + 1
2)2 R−2 + ϕ2

aij

−
∞
∑

n=1

(−1)n+1

n
e−nβ

q

(`+
1
2)2 R−2 +ϕ2

aij cos(nθij)
)

.

(3.24)

The complete one loop effective potential for the eigenvalues of the Polyakov loop

variable α and those of the constant modes ϕa is given by

Seff [ϕai, θi] = S(0) + S
(1)
b + S

(1)
f , (3.25)
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field angular mom. energy degeneracy weight

Bi ` > 0
√

(` + 1)2 R−2 + ϕ2 2`(` + 2) 1
2

Ci ` > 0
√

`(` + 2)R−2 + ϕ2 (` + 1)2 1
2

c̄, c ` ≥ 0
√

`(` + 2)R−2 + ϕ2 (` + 1)2 −1

A0 ` ≥ 0
√

`(` + 2)R−2 + ϕ2 (` + 1)2 1
2

φa ` ≥ 0
√

(` + 1)2 R−2 + ϕ2 (` + 1)2 1
2

ψA
α ` > 0

√

(` + 1
2)2 R−2 + ϕ2 2`(` + 1) −1

2

Table 1: The fields, their angular momenta, energy, degeneracy and their weight in the effective

action.

where the tree level potential for the eigenvalues is

S(0) = βRπ2 1

g2
Y M

N
∑

i=1

ϕ2
ai, (3.26)

while S
(1)
b and S

(1)
f are determined in (3.23) and (3.24). Note the power of 1/g2

Y M in front

of the tree level term indicating that our one loop contributions are parametrically down

by a power of the weak gauge coupling.

Table 1 summarizes the properties of all the modes including their range of angular

momenta, energies, degeneracies and the weight of the corresponding “log det” terms in

the effective potential.

Discussion. We now make the following observations about our result:

• Firstly, when the scalar fields ϕa vanish we reproduce the results of [6]. To see

how this works, we note that the first term in the one-loop effective potential in the

absence of the background scalars reduces to

log
∏

i<j

sin2
(θij

2

)

, (3.27)

which is precisely the Jacobian that converts the integration measure over the Her-

mitian matrix α into the appropriate measure for the Unitary matrix U = eiβα,

∫

[dα] det(−D̃0) =

∫

dU =

∫ N
∏

i=1

dθi

∏

i<j

sin2
(θij

2

)

. (3.28)

Here we have obtained this result following a different route from that adopted by [6].

So when the scalars vanish it is easy to see that we reproduce the effective action

written down in [6].

• Our effective potential was obtained by integrating out not only the non-zero mo-

mentum modes on S3×S1, but also the off-diagonal fluctuations of α and of the zero

modes (n = ` = 0) of φa. (In principle one also integrates out fluctuations of the
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diagonal pieces but these give no nontrivial contributions, due to the adjoint action of

the background fields on them). Note that the off-diagonal zero modes have masses
√

R−2 +
∑

a(ϕai − ϕaj)2 which are generically larger than the tree level masses for

the diagonal components of the constant modes. Accounting for these constant modes

is precisely what gives rise to the appropriate Jacobian factor for unitary matrices

discussed above and the repulsive Vandermonde interaction between the eigenvalues

ϕai of the scalars. The presence of the logarithmic repulsive force between the N

eigenvalues ϕai is easily inferred from the fluctuation determinant for the ` = n = 0

modes in (3.18).

• The potential is only a function of the variable

ϕ2
aij =

6
∑

a=1

(ϕai − ϕaj)
2. (3.29)

A non-zero expectation value for this will single out a particular direction in the space

spanned by the six scalars and hence will spontaneously break the SO(6) R-symmetry

to SO(5) in the large N theory. Note that the notion of symmetry breaking on a

compact space is unusual and we clarify this carefully in subsection 3.3.2.

• The thermal interpretation of the various terms in the effective potential is also fairly

clear. All the finite temperature contributions are accompanied by thermal Boltz-

mann suppression factors. In the zero temperature limit β = ∞, these vanish leaving

behind the terms which are manifestly linear in β. The latter are the zero temper-

ature or “Casimir energy” contributions on S3 in the presence of scalar expectation

values. We will discuss these zero temperature contributions in more detail in the

following section. For now, we make one additional observation that the term propor-

tional to
√

ϕ2
aij actually cancels against an identical piece emerging from the infinite

sums over `.

• The bosonic and fermionic determinants come with opposite signs as they must. It

is, however, important to realize that they do not cancel against each other due both

to finite temperature effects and the fact that the theory is formulated on a spatial

three-sphere. A complete cancellation between bosonic and fermionic fluctuations

only occurs in flat space and at zero temperature. We will come back to this point

in the following subsection.

• The effective potential that we have obtained can be interpreted as a 1PI-effective

action for the eigenvalues of α and the ϕa and yields the one loop partition func-

tion about a given configuration of eigenvalues. At local minima of the action, we

may interpret the partition function as a thermodynamic partition function whose

logarithm is the thermodynamic free energy. For generic points in the configuration

space of field eigenvalues, the system will not be in a stable or static configuration.

Nevertheless, we may formally define a free energy as

F (ϕ, θ) = Seff/β. (3.30)
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We are interested both in extrema of this effective potential and the existence of and

emergence of any new unstable directions as a function of temperature.

• Finally, saddle points computed using the effective potential will be true saddle points

in the full configurations space, even though we are setting to zero the background

values of the off-diagonal constant modes. The reason for this is that, in our chosen

background of diagonal fields, the off-diagonal fluctuations only appear quadratically

and there are no terms linear in these fluctuations. This means that there are extrema

of the full effective action where these can be consistently set to zero and these are

the saddle points that we will find. However, there may well be other extrema where

the fields ϕ and α are not simultaneously diagonal.

3.2 The zero temperature limit

In this section we discuss the detailed form of the one loop effective potential at zero

temperature. This is not relevant for the high temperature analysis which is our main

focus. However, the limit of zero temperature will provide checks of our calculation and

also important intuition about the behaviour of the one-loop corrections.

The terms that survive in the zero temperature limit, β = ∞, are basically Casimir

contributions in the presence of background expectation values, and are identified as the

terms without any Boltzmann suppression factors in the effective potential. The total

Casimir free energy is therefore

F0 ≡
N

∑

ij=1

C(ϕ2
aij) , (3.31)

where

C(ϕ2) =

∞
∑

`=1

`(` + 2)
√

(` + 1)2 R−2 + ϕ2 + 3

∞
∑

`=0

(` + 1)2
√

(` + 1)2 R−2 + ϕ2

− 4

∞
∑

`=1

`(` + 1)
√

(` + 1
2)2 R−2 + ϕ2 − 1

2
ϕ .

(3.32)

Note the complete absence of any dependence on the Polyakov loop variable α.

Furthermore, as we remarked earlier, the bosonic and fermionic determinants do not

cancel against each other even at zero temperature though the system is supersymmetric.

This is purely a consequence of formulating the theory on a curved spatial manifold, namely

an S3. Hence there is a nontrivial quantum correction to scalar potential of the N = 4

theory on S3 × R even though all supersymmetries are unbroken. The cancellation is

recovered in the flat space limit.

Evidently the infinite sums, at least individually, require regularization. This can be

done by introducing a generalized ζ-function, or simple Epstein series,

E(z, θ;ϕR) =
∞
∑

n=−∞

[

(n + θ/2π)2 + (ϕR)2
]−z

. (3.33)
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In terms of this, the Casimir energy can be neatly expressed as

C(ϕ2) = 2R−1
[

E(−3
2 , 0;ϕR) − E(−3

2 , π;ϕR)

− ((ϕR)2 + 1
4 )

(

E(−1
2 , 0;ϕR) − E(−1

2 , π;ϕR)
)

]

.
(3.34)

The bosonic and fermionic contributions mirror each other with opposing signs, the former

yielding Epstein series with θ = 0 while the latter have θ = π.

It is easy to extract the zero point energy at ϕ = 0 formally in terms of the Riemann

zeta function and the generalized Riemann zeta function

F0[0] =
2

R

[

2ζ(−3) − ζ(−3, 1
2 ) − ζ(−3,−1

2) − 1
4

(

2ζ(−1) − ζ(−1, 1
2) − ζ(−1, 1

2)
)]

=
3

16R
.

(3.35)

This can be identified as

3

16
= 6 × 1

240
+

11

120
+ 4 × 17

960
, (3.36)

the well-known sum of the zero-point energies of scalars, vectors and fermions on a three-

sphere appropriate to the N = 4 theory.

More interesting is the behaviour for generic nonzero ϕaij wherein we need the analytic

continuation of the Epstein series which is known to be (see for example [22] or [23])

E(z, θ;ϕR) =

√
π (ϕR)1−2z

Γ(z)

[

Γ(z − 1/2) + 4
∞

∑

n=1

cos(nθ)
K1/2−z(2nπϕR)

(πnϕR)1/2−z

]

. (3.37)

The singularities corresponding to the individually divergent sums we encountered earlier

appear as the poles of the gamma function Γ(z − 1/2) for z = −1
2 and −3

2 . Notice that

these divergent poles correspond to putative mass and coupling constant renormalizations

respectively since they are coefficients of ϕ1−2z . However, the magic of the N = 4 theory

(whose supersymmetry is recovered in the limit β → ∞) ensures that these poles cancel

against each other in (3.34) to leave a finite result. Hence no subtraction or renormalization

is necessary, reflecting the UV finiteness of the theory.

The resulting expression for the zero temperature effective potential is then

F0[ϕaij ] =

N
∑

ij=1

C(ϕ2
aij), (3.38)

with

C(ϕ2) =

12(ϕR)2

π2R

∞
∑

n=1

K2(2(2n − 1)π ϕR)

(2n − 1)2
+

2ϕR (4(ϕR)2 + 1)

πR

∞
∑

n=1

K1(2(2n − 1)πϕR)

2n − 1
,

(3.39)

which manifestly vanishes exponentially for large ϕ using standard asymptotic properties

of the Bessel functions. The reason we expect these one loop effects to vanish at large
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Figure 4: The one-loop correction at zero temperature on S3.

ϕR is essentially a decoupling argument. The masses of the modes being integrated out

increase with increasing ϕ and hence their contributions are suppressed at large ϕ.

For small ϕ, the expansion of C(ϕ) is poorly behaved; nevertheless its asymptotic limit

ϕR → 0 can be extracted:

C(0) =
6

π4R

∞
∑

n=1

1

(2n − 1)4
+

1

π2R

∞
∑

n=1

1

(2n − 1)2
=

3

16R
, (3.40)

coinciding with the ϕ = 0 result above.

A numerical approximation of the zero temperature effective potential is plotted in

figure 4. The full potential (along the simultaneously diagonal scalar directions) is obtained

by adding to it, the tree level conformal coupling to the curvature.

3.3 High temperature effective potential

We now turn to the high temperature behaviour of the effective potential. As is well-known,

the high temperature behaviour of gauge theories is subtle even at weak gauge coupling

requiring a detailed understanding of the relevant length scales in question.

In the high temperature limit for the N = 4 theory, the temperature is much larger

than the inverse radius of the S3

T À 1

R
. (3.41)

Naively this is like a flat space limit. However the situation is more subtle since the theory

has an infrared cutoff corresponding to the finite size of the three-sphere and what we

really need to know is how the combination TR scales with the weak ”t Hooft coupling

λ = g2
Y MN . We will come back to this issue later. For now, we note that a weakly coupled

SU(N) Yang-Mills plasma has a hierarchy of length scales (see e.g [24, 25]), chief among

these being the temperature T , followed by the perturbative electric screening scale or

Debye length (
√

λT )−1 and the non-perturbative magnetic screening length (λT )−1. Each

length scale is described by an appropriate effective theory obtained by integrating out

higher momentum modes.

Let us first take the naive high temperature limit (TR À 1) of our one loop effective

potential (3.25). In this limit, all the mode sums over ` can be approximated by momentum
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Figure 5: The function H(y).

integrals over a continuous variable x = n`/(TR). In addition, the zero temperature

contributions to the one loop potential are sub-leading and the high temperature effective

action takes the form,

Seff [φ, θ] =

2βR3π2





R−2

2g2
Y M

N
∑

i=1

ϕ2
ai + 4

T 4

π2

∞
∑

n=1

N
∑

ij=1

(1 − (−1)n)
1

n4
H

(

n
|ϕaij |

T

)

cos(nθij)



 .
(3.42)

where

|ϕaij | ≡
(

6
∑

a=1

ϕ2
aij

)

1

2

. (3.43)

We have expressed our result in terms of the function

H(y) = −
∫ ∞

0
dxx2e−

√
x2+y2

= −y

2

(

yK0(y) + 2K1(y) + yK2(y)
)

, (3.44)

which is plotted in (5). Notice that it is a negative definite, even, monotonically increasing

function of |y|. For small y the function H(y) approaches a constant as

lim
y→0

H(y) = −2 +
y2

2
+ O(y3) , (3.45)

while as y → ∞, H(y) approaches zero exponentially as

lim
y→∞

H(y) = −
√

π

2
y3/2e−y . (3.46)

The limit we have taken yields an R-independent expression for the one loop term in

(3.42). Consequently we obtain the flat space result for a combined one loop potential for

the scalars and the Polyakov loop in thermal N = 4 theory. 6 The only trace of the curved

background is in the tree level mass term originating from coupling to the background

curvature. Strictly speaking we should include an infrared cutoff in the momentum integrals

6Similar expressions were obtained by [10] but for the case where the Polyakov loop variables are set to

zero, corresponding to the deconfined phase, along with the inclusion of a finite chemical potential.
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reflecting the compactness of the three-sphere background, although it will not alter our

result in the regime of interest. The regime of validity of the above potential will be

discussed in more detail below.

We will now explore some general properties of the high temperature potential obtained

above. The one loop correction is only a function of the differences ϕaij = ϕai−ϕaj , and the

eigenvalues ϕai each experience a quadratic classical potential due to the mass. Therefore

for U(N) gauge group we can consistently set to zero the expectation value of the scalar

belonging to the diagonal U(1) multiplet of the U(N)

N
∑

i=1

ϕai = 0 . (3.47)

Alternatively, this is automatically true if we work with SU(N) gauge group from the start.

Using this, and defining the dimensionless field

ϕ̃aij ≡
ϕai − ϕaj

T
, (3.48)

the effective action assumes the form

Seff =

2(TR)3π2
N

∑

ij=1

[

R−2

λT 2
ϕ̃2

aij +
1

π2

∞
∑

n=1

(1 − (−1)n)
4

n4
H(n|ϕ̃aij |) cos(nθij)

]

,
(3.49)

where the ’t Hooft coupling λ = g2
Y MN makes a natural appearance. As before we have

used the shorthand |ϕ̃aij | for (
∑

a ϕ2
aij)

1

2 . Note the emergence of the dimensionless ratio

involving the Debye mass scale

R

(
√

λT )−1
, (3.50)

which governs the size of the quantum correction relative to the classical term. The classical

piece will dominate in the high temperature limit provided

1 ¿ TR <
1√
λ

, (3.51)

and perturbation theory in λ will be valid in this regime. In other words, for perturbation

theory in λ to make sense, the size of the three-sphere must not exceed the Debye screening

length scale. But since we are at arbitrarily weak coupling, we can always choose high

enough temperature while satisfying this requirement so that the discrete mode sums can

be effectively replaced with integrals.

Note also that since one loop contributions are planar, the quantum corrections we

have computed automatically scale as N2 in the ’t Hooft large N limit, due to the double

summation over i and j indices.
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3.3.1 A global minimum and big AdS black hole

The function H(y) is negative for all values of y. Hence the absolute minimum of Seff is

obtained when all ϕai vanish 7 and all the θi are equal. Using (3.22),
∑

i θi = 0 mod 2π,

we find a non-zero expectation value for the Polyakov loop:

〈U〉 ≡ 1

N
Tr eiβα =

1

N

N
∑

j=1

eiθj = e
2πi
N

k, k = 1, 2, . . . N. (3.52)

Actually, in finite volume, one must define this expectation value carefully as discussed

in [6] in order to avoid a vanishing result due to averaging over the ZN vacua. To this

end one first introduces a bias which breaks the ZN symmetry, then takes a large N limit

and subsequently removes the bias to obtain a non-zero value for 〈U〉. Alternatively, one

may simply compute 〈|U |2〉. A non-zero Polyakov loop implies that the theory is in a high

temperature deconfined phase without any VEVs for scalars. Indeed, this saddle point of

the effective potential coincides with the high temperature deconfined phase of the free

N = 4 theory identified in [6].

Since we have argued that this is a global minimum of the action, we know that the

saddle point is stable, at least within the range of temperatures in which the one loop

approximation is valid. Importantly for us, this deconfined phase is the continuation to

weak coupling of the large AdS Schwarzschild black hole which is the gravity dual of

the strongly coupled deconfined plasma phase. At high temperatures, this minimum will

dominate the canonical ensemble.

Let us finally check that this deconfined vacuum is indeed stable to fluctuations in the

scalar directions. Using the behaviour of H(y) near the origin, we find

Seff ' π2R3β

N
∑

ij=1

[

R−2

λ
ϕ2

aij + T 2 ϕ2
aij

]

, as
ϕaij

T
→ 0, (3.53)

which is clearly stable for all temperatures in the range above and formally for all T . What

we have found here is simply the finite temperature mass renormalization or the thermal

mass of the scalars in the deconfined phase. As anticipated earlier the one loop thermal

mass in the deconfined phase is given by

mth =
√

λT . (3.54)

This stability of the deconfined plasma phase at weak coupling is also in line with the

absolute stability of the big AdS Schwarzschild black hole at strong coupling.

3.3.2 Unstable directions charged under R-symmetry group

So far we have restricted ourselves to a regime of temperatures (3.51) wherein perturbation

theory in λ is valid and where the classical term dominates the first quantum correction.

In this temperature range, for arbitrary {θi} the classical mass ensures that small ϕ-

fluctuations are locally stable.

7Actually, there is repulsive Vandermonde type interaction which leads to an eigenvalue spread of O(λ)

about ϕ = 0. This is quantum effect and subleading compared to the effects that are of interest to us.
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Perturbation theory at high temperature. Importantly, the one loop result actually

has a much wider range of validity. It is in fact also valid at temperatures where it competes

with the tree level term, i.e.

TR ∼ 1√
λ

, (3.55)

while higher order perturbative contributions remain consistently parametrically small.

The reason for this is fairly well-known in flat space: At length scales larger than the

Debye screening length and smaller than the magnetic screening length, perturbation the-

ory remains a good description with one key difference — the expansion parameter is
√

λ

instead of λ. Of course, the situation is simpler on S3 with R ∼ (
√

λT )−1 providing an

infrared cutoff.

In the present context we may understand this as follows. In the high temperature

limit, replacing discrete mode sums with integrals, the n loop contribution to the effective

potential in naive perturbation theory will be of the form

1
Vol(S3×S1) S(n)[ϕ] ∼ λn−1 T 4 Fn

(ϕ

T

)

(3.56)

simply by dimensional analysis and power counting. For n > 1 these clearly appear to be

sub-leading to the one loop term at any temperature, including when the one loop effect

competes with the classical piece. However, a potential subtlety arises as ϕ/T → 0. In flat

space, at two loops and at higher orders, in this limit one encounters infrared divergences

which necessitate a resummation of the thermal mass of the excitations. In our case, while

we should consider a similar resummation, an infrared cutoff is already provided by the size

of the three-sphere. When R ∼ (
√

λT )−1 this IR cutoff is the Debye scale and perturbation

theory continues to be valid albeit in the parameter
√

λ as opposed to λ. Operationally

this is automatically achieved since the energies of the lowest ` = 0 bosonic and fermionic

modes are
√

R−2 + ϕ2 and
√

1
4R−2 + ϕ2 (see Table 1). Upon inclusion of this IR cutoff

in our momentum integrals, the two loop contribution as ϕ/T → 0 scales with an extra

power of
√

λ relative to the one loop term and is suppressed at weak ’t Hooft coupling.

In summary then, within the regime of validity of perturbation theory we are free to

consider temperatures where the tree level and one loop terms become comparable.

Unstable directions and a critical temperature. In the temperature range R−1 ¿
T < 1√

λ
R−1, for any configuration of θi’s, fluctuations in the ϕ direction are stable since the

classical mass term dominates. Within this regime, the global minimum of the potential

occurs where the absolute value of the Polyakov loop is unity with all ϕ fluctuations having

a positive mass squared (R−2 + λT 2).

However, the qualitative picture of the potential changes at temperatures

T & (
√

λR)
−1

. While the global minimum continues to be at ϕai = θi = 0, the fea-

tures of the effective potential away from the minimum can change quite dramatically.

Expanding the action to quadratic order in ϕ̃ near ϕ̃ ≈ 0, for a generic configuration of
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eigenvalues of the Polyakov loop, we find

Seff(θ, ϕ) '

2(TR)3π2
N

∑

ij=1

(

R−2

λT 2
ϕ̃2

aij +
4

π2
ϕ̃2

aij

∞
∑

k=1

1

(2k − 1)2
cos((2k − 1)θij)+

−16

π2

∞
∑

k=1

1

(2k − 1)4
cos((2k − 1)θij) + · · ·

)

.

(3.57)

Clearly, when the radius of the three-sphere becomes comparable to the Debye screening

length, it is conceivable that values of {θi} for which the cosines in the above formula turn

negative, can lead to instabilities in the ϕ direction.

Indeed, we will find that there is a critical temperature below which there are no

unstable ϕ fluctuations for a given configuration of {θi},

Tc =

√

κN

λ
R−1 . (3.58)

where κN is an N -dependent constant. At this temperature, an unstable direction develops

around the configuration where the eigenvalues are uniformly distributed with zero expec-

tation value for the Polyakov loop. Above the critical temperature, the unstable ϕ mode

makes an appearance for a wider range of values of the Polyakov loop.

Example: SU(2). The situation is easiest to illustrate in the SU(2) theory where the

set {θi} and {ϕai}, each have only a single independent degree of freedom since

θ1 + θ2 = 2π, ϕa1 + ϕa2 = 0. (3.59)

The SU(2) Polyakov loop is then

U = cos θ1, 0 ≤ θ1 ≤ π. (3.60)

Rewriting the full SU(2) effective potential (3.49) in terms of the variables θ1 and ϕ1 we

find the behaviour shown in figure 6.

The SU(2) theory has a critical temperature

Tc =

√

2

λ
R−1. (3.61)

For temperatures in the range R−1 ¿ T < Tc, there is a saddle point at 〈U〉 = ϕ = 0

with one unstable direction along the U -axis. This saddle point is actually stable below

the Hagedorn or deconfinement temperature on S3 [6] and is the confined phase with zero

expectation value for the Polyakov loop.

The situation changes beyond the critical temperature Tc when a second unstable

direction appears at 〈U〉 = 0. The full effective potential (3.49) now exhibits new extrema

or saddle points with
(ϕa1

T

)2
6= 0 (3.62)
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Figure 6: The effective action is plotted for T < Tc on the left and T > Tc on the right, as a

function of ϕ and the Polyakov loop 〈U〉 for SU(2) gauge group.

as in figure 6. It is easy to see that these saddle points must exist. At 〈U〉 = 0, we have seen

that there is an instability at ϕ1 = 0. For large values of ϕ1, the quadratic term in (3.49)

dominates since H(ϕ) vanishes exponentially. Hence there must be a point for intermediate

values of (ϕ1/T ) which is stable to fluctuations along this direction. Importantly, in figure 6

we see that these points are unstable to rolling to the 〈U〉 = 1 vacuum. Hence these new

extrema are indeed saddle points. The instability to fluctuations in ϕ around ϕ = 0 persists

for a finite range of values of the Polyakov loop 〈U〉. At very high temperatures above Tc,

all points with ϕ = 0 and 0 ≤ 〈U〉 ≤ 1√
2

acquire an unstable mode along the ϕ axis.

SU(N) at large N . The above picture generalizes rather directly for SU(N) gauge group.

The unstable extremum at ϕai = 0 is characterized by a uniform distribution of the eigen-

values of the Polyakov loop,

θj =
2π

N
j + c(N) , j = 1, 2, . . . N (3.63)

where c is a constant chosen so that

N
∑

i=1

θi = 0 mod 2π. (3.64)

It is a stable ground state of the theory below the Hagedorn temperature on S3 [6] and

leads to a vanishing Polyakov loop and infinite free energy for colored sources. At strong

coupling (and large N) and below the deconfinement transition, this phase is dual to the

thermal AdS space saddle point of semiclassical Euclidean gravity.

The temperatures we are considering, T & (
√

λR)−1 at weak coupling are far above the

deconfinement transition and hence 〈U〉 = 0 is only an unstable extremum. The question

we are interested in is, whether there are new unstable directions about this saddle point.

This may be answered by examining the quadratic form in ϕ (3.57). The associated matrix

is a circulant, whose eigenvalues may be determined relatively easily (see appendix A). In
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the large N limit, we find that as the temperature is increased beyond a critical value

new unstable directions start to appear, with the first negative eigenvalue occurring at the

critical temperature

Tc =
π√
2λ

R−1. (3.65)

As the temperature is increased beyond this, we find more negative modes, each one ap-

pearing when the temperature hits the critical values (appendix A),

T (l)
c = (2l − 1)

π√
2λ

R−1, l = 1, 2, . . . . (3.66)

The number of unstable directions is (N/2−1) when N is even and (N−1)/2 for N odd, and

hence is formally infinite in the large N limit in the one loop approximation. Interestingly,

this is consistent with what is observed for the small AdS black hole in classical gravity [16].

We should however, bear in mind that in weakly coupled field theory we expect perturbation

theory for the constant modes or low lying harmonics on S3 to break down at high enough

temperatures where the size of the three sphere approaches the non-perturbative magnetic

screening length R ∼ (λT )−1. Therefore we can trust (3.66) for (2l − 1) ¿ 1√
λ
. We also

point out that the modes that we see becoming unstable are constant on S3×S1, the higher

Kaluza-Klein harmonics remain massive at these temperatures and within the regime of

validity of the one loop approximation.

As in the SU(2) example we then find new extrema where

6
∑

a=1

ϕ2
ai 6= 0 . (3.67)

The existence of these saddle points follows from the instabilities at ϕ = 0 and the fact

that at large ϕ the quadratic mass term dominates the potential. This can be verified by

numerically plotting the full expression for the potential (3.49). Our potential is written

in terms of the SO(6)-invariant radial coordinate
∑

a ϕ2
ai in the space of the six scalars. In

a non-compact space, a non-zero value for this coordinate at the new saddle points would

be interpreted as breaking the global R-symmetry of the N = 4 theory to SO(5)

SO(6) −→ SO(5). (3.68)

How can we understand this in the context of the field theory on a compact space, namely

the three-sphere, where we do not expect to see symmetry breaking.

Symmetry breaking at large N. Symmetry breaking is not normally possible in a

finite volume since the wave function spreads over the vacuum manifold or points in field

space which are related by the symmetry. This means that we must average over the orbit

of the symmetry group, or include in the partition function, an integral over such states.

Concretely, introducing the notation

ρi =

(

6
∑

a=1

ϕ2
ai

)

1

2

i = 1, 2, . . . N (3.69)
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for the radial mode of scalar eigenvalues, if ρi is allowed a non-vanishing value, then we

must integrate over the corresponding orbit SO(6)/SO(5) ' S5. Formally then, we must

write the partition function as

Z =

∫ N
∏

j=1

(dρj ρ5
j ) (dΩ5)

N e−Seff [ρi]. (3.70)

Actually the above is not completely correct since the orbit of the global symmetry group

is the symmetric product space, SymN (SO(6)/SO(5)) ' SymN (S5), due to the action of

the Weyl subgroup of SU(N). However, what is important for us is that the space is

5N -dimensional and the full partition function is

Z ∼
∫ N

∏

j=1

(dρj) e−Seff [ρi]+5
PN

i=1
ln ρi . (3.71)

However Seff scales as N2 in the large N limit while the measure from averaging over the

orbit of the symmetry group is of O(N1). Hence, in the large N limit we may neglect the

contribution from the latter to compute the saddle points of the effective action. Note that

taking the volume of the space to infinity would also have a similar effect since Seff scales

extensively with the volume of the three-sphere.

Symmetry breaking may now be defined in the large N theory in the conventional way.

At finite N we introduce a source which breaks the SO(6) symmetry,

δS = N2εi ϕai. (3.72)

Taking N to infinity first, followed by ε to zero permits breaking of the SO(6) symmetry.8

As in the SU(2) example, the unstable directions persist as we move away from 〈U〉 = 0,

the uniform distribution for the θi. Indeed, as some of the θi start to clump together, the

cosines in (3.57) cease to be negative and some of the negative modes start disappearing.

This is true in particular when the distribution develops a gap, an extreme example of

which is the delta function distribution associated to the big AdS black hole which is the

global minimum of the action.

3.3.3 The gravity interpretation

We now compare and contrast the weak coupling, high temperature picture obtained above

of large N , N = 4 SYM on S3 × S1 with the known strongly coupled dual, namely

gravity/string theory on AdS5 × S5.

The free N = 4 theory on S3 analyzed in [6] exhibits two different phases at large

N , a confined phase and a deconfined phase separated by a first order phase transition at

T = TH = 1/(R ln(7 − 4
√

3)−1). It is believed that these two phases at λ = 0 are the

infinitely curved, stringy versions of thermal AdS space and the big AdS Schwarzschild

black hole which are separated by a first order Hawking-Page transition.

8Global (chiral) symmetry breaking in large N gauge theory on a finite volume space has been studied

in a different context in [26]
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In the free (λ = 0) Yang-Mills theory, above TH the thermal AdS extremum is unstable.

Our field theory results above show that the weakly interacting large N field theory develops

additional (unstable) saddle points above a critical temperature

Tc =
π√
2λ

R−1. (3.73)

These configurations with scalar expectation values only preserve an SO(5) subgroup of the

SO(6) R-symmetry of N = 4 theory. We stress that these saddle points are not themselves

stable, but have lower actions than the “thermal AdS” configuration (characterized by

〈U〉 = ϕia = 0) which develops unstable directions towards these new saddle points at high

temperature.

We interpret these new unstable directions as the infinite curvature or string scale

manifestations of the Gregory-Laflamme instability of the small AdS Schwarzschild black

hole, a phenomenon which is observed at weak curvature or strong ’t Hooft coupling (λ →
∞). As described in section 2, in semiclassical gravity this instability is a dynamical

instability at the small AdS black hole saddle point which is already thermodynamically

unstable. The dynamical instability triggers the localization of the small black hole on the

S5 breaking the SO(6) isometry to SO(5).

There is of course a crucial distinction between the weak and strong coupling regimes.

The dynamical instability we see occurs at temperatures T & O(R−1/
√

λ) which is far

above the Hagedorn temperature. At these temperatures the saddle point corresponding

to the small black hole has already disappeared [6] or merged with the thermal AdS con-

figuration [8]. Hence it is the 〈U〉 = 0 extremum, associated to thermal AdS at strong

coupling, which becomes “unstable to localization on S5”.

It is easy to see how the the strong and weak coupling pictures might match on

smoothly. As the ’t Hooft coupling is increased, the critical temperature (3.65) decreases

at weak coupling. It is conceivable that as we move towards strong coupling the critical

temperature Tc at which the new instabilities are triggered, eventually becomes compara-

ble to and lower than the Hagedorn temperature where the small black hole exists as a

saddle point of the action. Hence for temperatures in the range Tc < T < TH , the small

black hole saddle point can be expected to be unstable to new saddle points which break

the SO(6)R down to SO(5)R. As we have already mentioned in the introduction, there is

also the possibility that at relatively small ’t Hooft couplings with dual gravity curvatures

approaching the string scale, the small black hole likely makes a transition to a highly

excited state of strings before any Gregory-Laflamme like instabilities can kick in.

4. Summary and conclusions

In this paper we have performed an explicit computation of a joint one loop effective action

for the eigenvalues of constant scalar fields and the Polyakov loop in SU(N) N = 4 SYM

on S3 × S1. Our perturbative computation is valid for temperatures 0 ≤ T ¿ 1
λR−1 and

in particular for temperatures where the size of the three sphere approaches the Debye

screening length of the Yang-Mills plasma R ∼ (
√

λT )−1.
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We find at large N , above a critical temperature

Tc =
π√
2λ

R−1 (4.1)

the effective potential exhibits new extrema with non-zero values for the N = 4 scalar fields.

The emergence of these saddle points is accompanied by new unstable directions at the

thermal AdS extremum which was characterized by a uniform distribution of Polyakov loop

eigenvalues. The latter is already unstable at temperatures below Tc but new instabilities

along the scalar directions appear at Tc. We believe these unstable directions to be the

small ’t Hooft coupling manifestations of a well known dynamical instability in the gravity

dual of the strongly coupled gauge theory — the Gregory-Laflamme localization instability

of the small black hole in AdS5×S5. Note that the weak coupling instability we have found

is not associated to a small black hole saddle point since the latter does not exist at Tc or

has merged with the thermal AdS saddle point at the Hagedorn temperature far below Tc.

Many open questions remain, chief among these being the physical meaning of the

instabilities of the thermal AdS saddle point at these high temperatures, and how they

turn into dynamical instabilities of the small black hole at intermediate or strong coupling.

Possible answers to this question have been presented in the paper and are summarized in

a phase plot in figure 1.

We also find that whenever the temperature reaches a critical value T
(l)
c = (2l−1)Tc for

l = 1, 2, 3, . . . a new negative mode shows up. A similar infinite set of negative modes is also

expected from the classical gravity analysis of [16]. It would be interesting to understand

the similarities between the two pictures better, particularly whether the linear dependence

of T
(l)
c on l can be understood at all from the gravity perspective, even though the latter

is only valid at strong ’t Hooft coupling. It is somewhat tantalizing that the values of T
(l)
c

for the first five negative modes obtained numerically in [16] 9 appear to exhibit this linear

behaviour.

A natural extension of the results of this paper is to include a finite chemical potential

for an SO(2) subgroup of the SO(6) R-symmetry. The corresponding gravity dual involves

charged black holes. These also exhibit Gregory-Laflamme instabilities and we explore

them at weak coupling in the holographic dual in [27]. The weak coupling analysis appears

to exhibit stable saddle points with global symmetry breaking at finite chemical potential.

The phase structure for R-charged black holes was discussed in [28 – 30] and the dual field

theory phase diagram at weak coupling has been explored recently in [10].

The effective potential we have computed is a static effective potential since we cal-

culate it in the Euclidean theory on S3 × S1. It is difficult to interpret it as an effective

potential in the Lorentzian field theory on S3 × R since it is not clear what the Polyakov

loops mean in the Lorentzian theory. However, there is a different analytic continua-

tion to Lorentzian signatures where our effective potential may be usefully interpreted.

This involves analytically continuing one of the angular directions on the three-sphere to

Lorentzian signature which maps S3 × S1 to dS3 × S1, leaving the thermal circle as a

9The authors of [16] give the values of r+ for each of these modes, which can be easily converted to a

temperature.
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spatial circle. As discussed originally in [31] this is the boundary of a “topological black

hole” constructed as a certain orbifold of AdS5 [32] . The topological black hole decays

to an AdS bubble of nothing [33] where the bounce solution is the Euclidean small AdS

black hole which is unstable to localization on the S5. As pointed out by the authors

of [31], this should be described in a dual field theory via an effective potential that allows

rolling in a direction breaking the SO(6) symmetry. The methods presented in our paper

and our effective potential naturally allow such a holographic description of the process of

gravitational decay via the bubble of nothing, at least in an adiabatic approximation.
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A. Unstable directions of the effective potential

In this appendix, we perform the small fluctuation analysis of the effective potential ex-

panded about ϕ ≈ 0 for a uniformly distributed configuration of Polyakov loop eigenvalues

(3.57). This will tell us about instabilities around the thermal AdS saddle point as a

function of temperature.

We are interested in the eigenvalues of the quadratic form in ϕ̃iϕ̃j appearing in (3.57)

which can be rewritten as (neglecting overall multiplicative constants)

N
∑

ij=1

ϕ̃iϕ̃j

(

δij

[

R−2

λT 2
(N − 1) − 1

2
+

1

2N
δN,odd

]

−

(1 − δij)

[

R−2

λT 2
+

4

π2

∞
∑

k=1

1

(2k − 1)2
cos

(

2π

N
(2k − 1)(i − j)

)

]

)

,

(A.1)

where we have used θij = 2π(i − j)/N at the thermal AdS saddle point.

The quadratic form above is an example of an N × N circulant matrix i.e. a matrix

each of whose rows (or columns) can be obtained by cyclic permutations of the elements

of one particular row (or column). The N eigenvalues of a circulant matrix with a row of

the form (x1, x2, . . . xN ) are given by

λ` =
N

∑

m=1

xm e
2πi
N

(m−1)` ` = 0, 1, 2, . . . N − 1. (A.2)

Applying this formula to the quadratic form (A.1), we can find the eigenvalues easily.
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The expressions simplify at large N and we quote the results below

λ0 = 0

λ2`−1 = N

[(

R−2

λT 2

)

− 2

π2

1

(2` − 1)2
+ O

(

1

N2

)]

λ2` = N

[(

R−2

λT 2

)

+ O(
1

N2
)

]

(A.3)

with ` = 1, 2, . . ..

It is clear that each of the eigenvalues with odd labels becomes negative at a critical

temperature

T` =
(2` − 1)π√

2λ
R−1. (A.4)

and the first instability occurs at

Tc =
π√
2λ

R−1. (A.5)
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